If it's not what You are looking for type in the equation solver your own equation and let us solve it.
4.9x^2+2x-450=0
a = 4.9; b = 2; c = -450;
Δ = b2-4ac
Δ = 22-4·4.9·(-450)
Δ = 8824
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{8824}=\sqrt{4*2206}=\sqrt{4}*\sqrt{2206}=2\sqrt{2206}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(2)-2\sqrt{2206}}{2*4.9}=\frac{-2-2\sqrt{2206}}{9.8} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(2)+2\sqrt{2206}}{2*4.9}=\frac{-2+2\sqrt{2206}}{9.8} $
| 3(2x-8)=4(x+6) | | 6m+40=4m+55 | | 8(x+2)=6(x+6) | | 42=7(2x+3) | | n3− 1=3 | | (3x+8)/(9x+4)=3/8 | | y2-16+51=0 | | (7-5)(y-7)=0 | | 7x+6=5(x-3)+3 | | ×2+6x-7=0 | | (a+2)×+5=0 | | 4-5x=3×-12 | | -3c-(8)=29 | | 3x×4x×5x=180 | | 6m2+8+2=0 | | 0.5x^2-4=3x+4 | | 10(x+9)+x/5=1002 | | –6+x=–12 | | 5x+30=12×-33 | | -(x-2)^2+4=0 | | 28=3r+7 | | 2x-6=-7+3x | | 23=14+v | | 4x=14+4x-13 | | 6x-25=-4x | | 12-3x-3=9-15x | | 15=-7+a | | 2x+20=74−7x | | 5^2x-8=7^2x-8 | | 5x+21=4x–17 | | 3x+8=-24+5x | | 10x+27=17 |